4.7 Article

Fluid flow through nanometer-scale channels

Journal

PHYSICAL REVIEW E
Volume 65, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.65.031206

Keywords

-

Ask authors/readers for more resources

We describe studies of the pressure driven flow of several classical fluids through lithographically produced channels in which one dimension, the channel height h, is in the micron or nanometer size range. The measured flow rates are compared with theoretical predictions assuming no-slip boundary conditions at the walls of the channel. The results for water agree well with this prediction for h as small as 40 nm (our smallest channels). However, for hexane, decane, hexadecane, and silicone oil we find deviations from this theory when h is reduced below about 100 nm. The observed flow rates for small h are larger than theoretical expectations, implying significant slip at the walls, and values of the slip length are estimated. The results are compared with previous experimental and theoretical work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available