4.6 Article

Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites

Journal

JOURNAL OF BONE AND MINERAL RESEARCH
Volume 17, Issue 3, Pages 472-480

Publisher

WILEY
DOI: 10.1359/jbmr.2002.17.3.472

Keywords

bone mineral; carbonate apatite; bovine; P-31; solid state nuclear magnetic resonance

Funding

  1. NATIONAL INSTITUTE OF ARTHRITIS AND MUSCULOSKELETAL AND SKIN DISEASES [R01AR042258] Funding Source: NIH RePORTER
  2. NATIONAL INSTITUTE ON AGING [R01AG014701] Funding Source: NIH RePORTER
  3. NCRR NIH HHS [RR03264] Funding Source: Medline
  4. NIAMS NIH HHS [AR42258] Funding Source: Medline
  5. NIA NIH HHS [R01-AG14701] Funding Source: Medline

Ask authors/readers for more resources

Studies of the apatitic crystals of bone and enamel by a variety of spectroscopic techniques have established clearly that their chemical composition, short-range order, and physical chemical reactivity are distinctly different from those of pure hydroxyapatite. Moreover, these characteristics change with aging and maturation of the bone and enamel crystals. Phosphorus-31 solid state nuclear magnetic resonance (NMR) spin-spin relaxation studies were carried out on bovine bone and dental enamel crystals of different ages and the data were compared with those obtained from pure and carbonated hydroxyapatites. By measuring the P-31 Hahn spin echo amplitude as a function of echo time, Van Vleck second moments (expansion coefficients describing the homonuclear dipolar line shape) were obtained and analyzed in terms of the number density of phosphorus nuclei. P-31 magnetization prepared by a 90degrees pulse or by proton-phosphorus cross-polarization (CP) yielded different second moments and experienced different degrees of proton spin-spin coupling, suggesting that these two preparation methods sample different regions, possibly the interior and the surface, respectively, of bone mineral crystals. Distinct differences were found between the biological apatites and the synthetic hydroxyapatites and as a function of the age and maturity of the biological apatites. The data provide evidence that a significant fraction of the protonated phosphates (HPO4-2) are located on the surfaces of the biological crystals, and the concentration of unprotonated phosphates (PO4-3) within the apatitic lattice is elevated with respect to the surface. The total concentration of the surface HPO4-2 groups is higher in the younger, less mature biological crystals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available