4.6 Article

Density profiles in a spherical infall model with non-radial motions

Journal

ASTRONOMY & ASTROPHYSICS
Volume 382, Issue 1, Pages 84-91

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20011620

Keywords

galaxies : formation; galaxies : halos; galaxies : structure; methods : numerical

Ask authors/readers for more resources

A generalized version of the Spherical Infall Model (SIM) is used to study the effect of angular momentum on the final density profile of a spherical structure. The numerical method presented is able to handle a variety of initial density profiles (scale or not scale free) and no assumption of self-similar evolution is required. The realistic initial overdensity profiles used are derived by a CDM power spectrum. We show that the amount of angular momentum and the initial overdensity profile affect the slope of the final density profile at the inner regions. Thus, a larger amount of angular momentum or shallower initial overdensity profiles lead to shallower final density profiles at the inner regions. On the other hand, the slope at the outer regions is not affected by the amount of angular momentum and has an almost constant value equal to that predicted in the radial collapse case.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available