4.7 Article

Insulin resistance in morbid obesity - Reversal with intramyocellular fat depletion

Journal

DIABETES
Volume 51, Issue 1, Pages 144-151

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.51.1.144

Keywords

-

Ask authors/readers for more resources

Obesity is a frequent cause of insulin resistance and poses a major risk for diabetes. Abnormal fat deposition within skeletal muscle has been identified as a mechanism of obesity-associated insulin resistance. We tested the hypothesis that dietary lipid deprivation may selectively deplete intramyocellular lipids, thereby reversing insulin resistance. Whole-body insulin sensitivity (by the insulin clamp technique), intramyocellular lipids (by quantitative histochemistry on quadriceps muscle biopsies), muscle insulin action (as the expression of Glut4 glucose transporters), and postprandial lipemia were measured in 20 morbidly obese patients (BMI = 49 +/- 8 [mean +/- SD] kg . m(2)) and 7 nonobese control subjects. Patients were restudied 6 months later after biliopancreatic diversion (BPD; n = 8), an operation that induces predominant lipid malabsorption, or hypocaloric diet (n = 9). At 6 months, BPD had caused the loss of 33 +/- 10 kg through lipid malabsorption (documented by a flat postprandial triglyceride profile). Despite an attained BMI still in the obese range (39 +/- 8 kg . m(-2)), insulin resistance (23 +/- 3 mumol/min per kg of fat-free mass; P < 0.001 vs. 53 +/- 13 of control subjects) was fully reversed (52 +/- 11 mumol/min per kg of fat-free mass; NS versus control subjects). In parallel with this change, intramyocellular-but not perivascular or interfibrillar-lipid accumulation decreased (1.63 +/- 1.06 to 0.22 +/- 0.44 score units; P < 0.01; NS vs. 0.07 +/- 0.19 of control subjects), Glut4 expression was restored, and circulating leptin concentrations were normalized. In the diet group, a weight loss of 14 +/- 12 kg was accompanied by very modest changes in insulin sensitivity and intramyocellular lipid contents. We conclude that lipid deprivation selectively depletes intramyocellular lipid stores and induces a normal metabolic state (in terms of insulin-mediated whole-body glucose disposal, intracellular insulin signaling, and circulating leptin levels) despite a persistent excess of total body fat mass.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available