4.6 Article

Disruption of hematopoiesis and thymopoiesis in the early premalignant stages of infection with SL3-3 murine leukemia virus

Journal

JOURNAL OF VIROLOGY
Volume 76, Issue 5, Pages 2363-2374

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.76.5.2363-2374.2002

Keywords

-

Categories

Funding

  1. NATIONAL CANCER INSTITUTE [R01CA083823] Funding Source: NIH RePORTER
  2. NCI NIH HHS [R01 CA083823, CA 83823] Funding Source: Medline

Ask authors/readers for more resources

A time course analysis of SL3-3 murine leukemia virus (SL3) infection in thymus and bone marrow of NIH/Swiss mice was performed to assess changes that occur during the early stages of progression to lymphoma. Virus was detectable in thymocytes, bone marrow, and spleen as early as 1 to 2 weeks postinoculation (p.i.). In bone marrow, virus infection was detected predominantly in immature myeloid or granulocytic cells. Flow cytometry revealed significant reductions of the Ter-119(+) and Mac-1(+) populations, and significant expansions of the Gr-1(+) and CD34(+) populations, between 2 and 4 weeks p.i. Analysis of colony-forming potential confirmed these findings. In the thymus, SL3 replication was associated with significant disruption in thymocyte subpopulation distribution between 4 and 7 weeks p.i. A significant thymic regression was observed just prior to the clonal outgrowth of tumor cells. Proviral long terminal repeats (LTRs) with increasing numbers of enhancer repeats were observed to accumulate exclusively in the thymus during the first 8 weeks p.i. Observations were compared to the early stages of infection with a virtually nonpathogenic SL3 mutant, termed SL3DeltaMyb5, which was shown by real-time PCR to be replication competent. Comparison of SL3 with SL3DeltaMyb5 implicated certain premalignant changes in tumorigenesis, including (i) increased proportions of Gr-1(+) and CD34(+) bone marrow progenitors, (ii) a significant increase in the proportion of CD4(-) CD8(-) thymocytes, (iii) thymic regression prior to tumor outgrowth, and (iv) accumulation of LTR enhancer variants. A model in which disrupted bone marrow hematopoiesis and thymopoiesis contribute to the development of lymphoma in the SL3-infected animal is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available