4.7 Article

Redox/ROS regulation of lipopolysaccharide-induced mitogen-activated protein kinase (MAPK) activation and MAPK-mediated TNF-alpha biosynthesis

Journal

BRITISH JOURNAL OF PHARMACOLOGY
Volume 135, Issue 2, Pages 520-536

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.bjp.0704467

Keywords

antioxidant; cytokines; endotoxin; immunopharmacology; pathophysiology; p38 MAPK; TNF-alpha

Ask authors/readers for more resources

1 Redox and ROS regulation of MAPK-mediated TNF-alpha biosynthesis is not well characterized. It was hypothesized that the involvement of the MAPK pathway in regulating LPS-mediated TNF-alpha secretion is redox-dependent, NF-kappaB-sensitive and attenuated by N-acetyl-L-cysteine (NAC) and other antioxidants. 2 In alveolar epithelial cells, LPS induced a time- and dose-dependent phosphorylation of MAPK(p38). This was associated with the activation of MAPK-activated protein kinase, which phosphorylated the small heat-shock protein, Hsp27. 3 MAPK(p38) inhibition (SB-203580) abrogated LPS-induced TNF-alpha production. MAPK(ERK) blockade (PD-98059) attenuated TNF-alpha secretion, an effect synergistically amplified in the presence of SB-203580. 4 Regulation of NF-kappaB by selective inhibitors revealed that this pathway is partially involved in regulating LPS-mediated TNF-alpha secretion. Whereas the proteasome inhibitor, MG-132, had no effect on LPS-mediated TNF-alpha production, CAPE, sulfasalazine and SN-50, a cell-permeant NF-kappaB inhibitor, attenuated but did not abrogate TNF-alpha biosynthesis. 5 LPS up-regulated ROS, an effect abrogated by 4'-hydroxy-3'-methoxy-acetophenone and NAC, which reduced TNF-alpha secretion, induced the accumulation of GSH, reduced the concentration of GSSG, and blockaded the phosphorylation/activation of MAPK(p38) pathway. 6 ROS induced MAPK(p38) phosphorylation and selective antioxidants, including the permeant GSH precursor, gamma-GCE, reduced ROS-dependent MAPK(p38) phosphorylation. 7 These results indicate that the MAPK pathway and MAPK-mediated regulation of TNF-alpha. production is redox-dependent, GSH-mediated and requires, at least in part, a NF-kappaB/ROS-sensitive mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available