4.7 Article

Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model

Journal

CEMENT AND CONCRETE RESEARCH
Volume 41, Issue 5, Pages 467-476

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cemconres.2011.01.010

Keywords

Compressive strength; Elastic moduli; Micromechanics; Cement paste; Mortar

Ask authors/readers for more resources

It is well known from experiments that the uniaxial compressive strength of cementitious materials depends linearly on the degree of hydration, once a critical hydration degree has been surpassed. It is less known about the microstructural material characteristics which drive this dependence, nor about the nature of the hydration degree-strength relationship before the aforementioned critical hydration degree is reached. In order to elucidate the latter issues, we here present a micromechanical explanation for the hydration degree-strength relationships of cement pastes and mortars covering a large range of compositions: Therefore, we envision, at a scale of fifteen to twenty microns, a hydrate foam (comprising spherical water and air phases, as well as needle-shaped hydrate phases oriented isotropically in all space directions), which, at a higher scale of several hundred microns, acts as a contiguous matrix in which cement grains are embedded as spherical clinker inclusions. Mortar is represented as a contiguous cement paste matrix with spherical sand grain inclusions. Failure of the most unfavorably stressed hydrate phase is associated with overall (quasi-brittle) failure of cement paste or mortar. After careful experimental validation, our modeling approach strongly suggests that it is the mixture- and hydration degree-dependent load transfer of overall, material sample-related, uniaxial compressive stress states down to deviatoric stress peaks within the hydrate phases triggering local failure, which determines the first nonlinear, and then linear dependence of quasi-brittle strength of cementitious materials on the degree of hydration. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available