4.8 Article

In situ FT-IR measurements of competitive vapor adsorption into porous thin films containing silica nanoparticles

Journal

ANALYTICAL CHEMISTRY
Volume 74, Issue 5, Pages 1157-+

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac010990m

Keywords

-

Ask authors/readers for more resources

Vapor adsorption into porous ultrathin films on a gold surface is investigated with in situ surface plasmon resonance (SPR) and polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The thin films are prepared by the electrostatic self-assembly of oppositely charged poly(L-lysine) (PL) and silica nanoparticles on a chemically modified gold surface. Characterization,with ex situ SPR and PM-IRRAS demonstrates the buildup of multiple PL/SiO2 bilayers as well as an excellent correlation between the quantitative results from these two techniques. In situ vapor adsorption experiments with these thin films show evidence of porosity, reproducibility, and rapid reversibility. Exposure to acetone vapor (P/P-0 = 0.032) causes the film to adsorb 9% acetone by volume, which corresponds to coverage of approximately one-half of the silica nanoparticle surface area. In situ PM-IRRAS provides much information about the molecular interactions occurring in the film upon adsorption or desorption of vapors. Dosing with a mixture of vapors leads to a competition for adsorption into the film, and PM-IRRAS results show that acetone slightly out-competes nitromethane. These experiments with nanoparticle thin films demonstrate the advantages of using in situ PM-IRRAS for studying reversible adsorption in the presence of vapor mixtures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available