4.5 Article

Immunohistochemical study of p53-associated proteins in rat brain following lithium-pilocarpine status epilepticus

Journal

BRAIN RESEARCH
Volume 929, Issue 1, Pages 129-138

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0006-8993(01)03360-1

Keywords

lithium-pilocarpine; seizure; p53; neuronal death; immunohistochemistry

Categories

Funding

  1. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS013515, R01NS033499, R01NS041433] Funding Source: NIH RePORTER
  2. NINDS NIH HHS [NS41433, NS33499, NS13515, NS01792] Funding Source: Medline

Ask authors/readers for more resources

Activation of the p53-stress response pathway has been implicated in excitotoxic neuronal cell death. Recent studies have demonstrated an age-dependent induction of both p53 mRNA and protein in the rat brain following lithium-pilocarpine-mediated status epilepticus (LPSE). We investigated whether other proteins that have been shown to participate in the p53 cascade are induced by LPSE. We used immunohistochemistry to examine the expression of Mdm2. Bax, CD95/Fas/APO-1, ATM, Ref-1 and ubiquitin. A significant increase in nuclear Mdm2 immunoreactivity, which colocalized with p53, was observed in cells within hippocampal pyramidal cell layers, dentate gyrus, piriform cortex, amygdala and thalamus. Dual immunofluorescence microscopy revealed a reduction in free ubiquitin expression in cells with p53 and Mdm2 accumulation. Increased immunoreactivity for CD95/Fas/APO-1 and Bax was also detected in the same p53-positive cells. Moreover, expression of Ref-1 and ATM, which are involved in the response to oxidative stress-induced DNA damage and regulation of p53 function, were increased. Colocalization of Ref-1 and p53 suggests that Ref-1 might activate p53 function in LPSE-induced neurode generation. In contrast, ATM immunoreactivity was predominantly cytoplasmic suggesting that ATM may not directly modulate p53 activity in injured neurons. These results extend our previous observations with regard to activation and stabilization of p53 in injured central nervous system neurons. The data indicate that p53 induction following LPSE may activate downstream pro-apoptotic genes leading to neurodegeneration. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available