4.6 Article

The acetic acid forming channel in the acetone plus OH reaction: A combined experimental and theoretical investigation

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 4, Issue 3, Pages 461-466

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b108161f

Keywords

-

Ask authors/readers for more resources

In a flow reactor molecular beam sampling mass spectrometry investigation of the elementary reaction of acetone with OH at 290 K, no significant production of acetic acid could be measured; absolute calibrations result in a branching fraction of the OH-addition/CH3-elimination channel of at most approximate to5%. In a theoretical study of the acetone + OH reaction, the potential energy profiles of the OH-addition/CH3-elimination channel, the direct H-abstraction channel, and the indirect H-abstraction path via a hydrogen-bonded OH-acetone complex, were characterized at the B3LYP-DFT/6-31G(d,p) and B3LYP-DFT/6-311++G(d,p) levels of theory, with single-point CCSD(T)/6-311++G(2d,2p) energy calculations. At all levels, the barrier for OH-addition is found to be 6 +/- 0.5 kcal mol(-1), and at least 2.5 kcal mol(-1) higher than that for the H-abstraction channels. Transition state theory and RRKM - master equation calculations indicate that the OH-addition channel is negligible at all relevant atmospheric temperatures. These results are in disagreement with recent reports that the OH-addition/CH3-elimination channel contributes about 50% at room temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available