4.7 Article

Benefits of internal curing on service life and life-cycle cost of high-performance concrete bridge decks - A case study

Journal

CEMENT & CONCRETE COMPOSITES
Volume 32, Issue 5, Pages 339-350

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.cemconcomp.2010.02.007

Keywords

Internal curing; High-performance concrete; Bridge deck; Service life; Life-cycle cost

Ask authors/readers for more resources

This paper investigates the impact of internal curing on the service life of high-performance concrete (HPC) bridge decks by using analytical models to predict the times to onset of corrosion, onset of corrosion-induced damage, and failure of decks. Three bridge deck design options were compared: (i) normal concrete deck; (ii) HPC deck with supplementary cementing materials (SCM); and (iii) HPC deck with SCM and internal curing. It was found that the use of internal curing can extend the service life of high-performance concrete bridge decks by more than 20 years, which is mainly due to a significant reduction in the rate of penetration of chlorides in concrete as a result of reduced early-age shrinkage cracking and reduced chloride diffusion. Compared to normal concrete, HPC with SCM and internal curing was predicted to add more than 40 years to the service life of bridge decks in severe environmental conditions. Life-cycle cost reductions of 40% and 63% were estimated when conventional HPC and internally-cured HPC were used in bridge decks instead of normal concrete, respectively, despite the fact that the in-place unit cost of internally-cured HPC can be 4% higher than that of conventionally-cured HPC, which in turn can be up to 33% higher than that of normal concrete. This is due to a longer service life and less frequent maintenance activities offered by low-permeability HPC bridge decks. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available