4.5 Article

The role of ATP-sensitive potassium channels in neutrophil migration and plasma exudation

Journal

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.300.3.946

Keywords

-

Ask authors/readers for more resources

Neutrophil activation and migration during an inflammatory response is preceded or accompanied by plasma membrane electrical changes. Besides changes in calcium currents, neutrophils have a high permeability to potassium, mainly through potassium channels. However, the significance of potassium channels in neutrophil physiology is still unclear. Here, we show that the treatment of rats with the ATP-sensitive potassium channel blocker glibenclamide (4, 20, or 40 mumol/kg) dose dependently decreased carrageenan-, N-formyl-methionyl-leucyl-phenylalanine (fMLP)-, and lipopolysaccharide-induced neutrophil influx and fluid leakage into the interpleural space. On the other hand, minoxidil (an ATP-sensitive potassium channel opener; 25, 50, and 100 mumol/kg) increased both neutrophil influx and fluid leakage induced by a submaximal dose of carrageenan. In addition, in vitro human neutrophil chemotaxis induced by leukotriene B-4 or fMLP (both 1 muM) was fully blocked by glibenclamide (10, 30, and 100 muM) or tetraethylammonium (a nonselective potassium channel blocker; 1, 3, and 10 mM). Thus, our results disclose the possibility that ATP-sensitive potassium channels may have a role in neutrophil migration and chemotaxis and plasma exudation in the inflammatory response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available