4.7 Article

Investigating acid/peroxide-alkali pretreatment of sugarcane bagasse to isolate high accessibility cellulose applied in acetylation reactions

Journal

CELLULOSE
Volume 25, Issue 10, Pages 5669-5685

Publisher

SPRINGER
DOI: 10.1007/s10570-018-1991-0

Keywords

Sugarcane bagasse; Cellulose; Acid/peroxide-alkali pretreatment; Cellulose acetate; Accessibility; Crystallinity parameters

Funding

  1. CAPES

Ask authors/readers for more resources

Sugarcane bagasse was selected as residual feedstock to investigate the effects of an acid/peroxide-alkali (APA) combined pretreatment on the extraction of cellulose and on its applicability for producing cellulose acetate. The pretreatment was effective in disrupting the recalcitrant lignocellulose structure and isolating cellulose (SBC), which reached 85.67% purity. High performance liquid chromatography, H-1 and C-13 nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetry, calorimetry, X-ray diffractometry (XRD), scanning electron microscopy and elemental analysis were applied to characterize the materials. Crystallinity and accessibility were evaluated by Segal and deconvolution crystallinity indexes, full-width at half maximum, crystallite size (L), total crystalline index and lateral order index parameters. SBC cellulose presented lower crystallinity and was classified after XRD peak deconvolution as a mixture of cellulose II polymorph with considerable amorphicity and some features of remaining cellulose I beta from sugarcane bagasse, while CC was labeled type I beta, indicating that the sustainable material is more susceptible to chemical modifications. The degrees of substitution of acetylation products showed that both celluloses have satisfactory reactivity and reached mono, di and triacetylation in different reaction conditions. SBC cellulose is presented as an efficient and renewable alternative to commercial cellulose for producing chemicals, and it is proposed that the APA pretreatment had a significant influence on the low crystallinity and high accessibility of this material. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available