4.7 Article

Accessibility of hydroxyl groups in birch kraft pulps quantified by deuterium exchange in D2O vapor

Journal

CELLULOSE
Volume 21, Issue 3, Pages 1217-1226

Publisher

SPRINGER
DOI: 10.1007/s10570-014-0166-x

Keywords

Accessibility; Birch; Deuteration; Dynamic vapor sorption; Infrared spectroscopy; Water retention value

Funding

  1. Academy of Finland
  2. UPM

Ask authors/readers for more resources

Deuterium exchange in a deuterium oxide (D2O) atmosphere (95 % relative humidity), quantified by a dynamic vapor sorption (DVS) apparatus, was applied for assessing the accessibility of hydroxyl groups in birch kraft pulps. Achieving the maximum deuteration level exhibited slower kinetics than was earlier reported for experiments with ground wood and bacterial cellulose. The deuterium exchange process followed two parallel phenomena. Applying multiple drying and rewetting cycles gave kinetic information also on the hornification phenomenon occurring during these cycles. Dry birch pulps treated with sodium hydroxide solution of varying alkalinities at elevated temperatures were assessed for their accessible hydroxyl groups by DVS with deuterium exchange. This method was evaluated against deuteration combined with Fourier transform infra-red spectroscopy and water retention value (WRV). DVS measurements were in correlation with WRV and both the methods indicated that an alkaline treatment of dry birch pulp improves cellulose accessibility. The level of irreversible deuteration also decreased as the alkalinity was increased. DVS was shown to provide quantitative information on the accessibility but to be a time-consuming method for the pulp samples. A potential means to decrease the duration of the measurement is increased D2O exposure by excluding the drying phases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available