4.7 Article

Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material

Journal

CELLULOSE
Volume 22, Issue 1, Pages 435-447

Publisher

SPRINGER
DOI: 10.1007/s10570-014-0519-5

Keywords

Nanocellulose; Carbon aerogel; Oil absorption; 3D network structure

Funding

  1. UTIA Innovation Grant
  2. US Forest Service Southern Research Station under Southeastern Sun Grant Center [07-CR-11330115-087]

Ask authors/readers for more resources

The synthesis of a sponge-like carbon aerogel from microfibril cellulose, with high porosity (99 %), ultra-low density (0.01 g/cm(3)), hydrophobic properties (149 degrees static contact angle) and reusability is reported in this paper. The physical properties, internal morphology, thermal properties, and chemical properties of carbon aerogels heat-treated at 700 and 900 degrees C (Samples C-700 and C-900) were examined. Stabilization and carbonization parameters were optimized in terms of residual carbon yield. The BET surface area of Sample C-700 (521 m(2)/g) was significantly higher than of Sample C-950 (145 m(2)/g). Graphitic-like domains were observed in C-950. The highest normalized sorption capacity (86 g/g) for paraffin oil was observed in sample C-700. The removal of hydrophilic function groups during carbonization causes carbon aerogel to present highly hydrophobic properties. Carbon aerogel's ability to absorb oil is enhanced by its highly porous 3D network structure with interconnected cellulose nanofibrils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available