4.7 Article

Slurry sampling for the determination of arsenic, cadmium, and lead in mainstream cigarette smoke condensate by graphite furnace-atomic absorption spectrometry and inductively coupled plasma-mass spectrometry

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 372, Issue 5-6, Pages 723-731

Publisher

SPRINGER-VERLAG BERLIN
DOI: 10.1007/s00216-001-1226-2

Keywords

mainstream cigarette smoke condensate; slurry samples; trace metal analysis

Ask authors/readers for more resources

The slurry sampling technique has been applied for the determination of As, Cd, and Pb in mainstream cigarette smoke condensate (MS CSC) by graphite furnace-atomic absorption spectrometry (GF-AAS) and inductively coupled plasma-mass spectrometry (ICP-MS). The MS CSC of the 1R4F Reference Cigarette was collected by electrostatic precipitation and was subsequently prepared as two slurry samples with and without the dispersing agent Triton X-100. Comparison of results determined by ICP-MS analyses of the 1R4F MS CSC slurry samples with those from the conventional microwave digestion method revealed good agreement. The precision of Triton X-100 slurry sampling and of microwave-assisted digestion was better than 10% RSD, and both were superior to slurry sampling without use of Triton X-100. The accuracy of the analytical results for the Triton X-100 slurry sample was further verified by graphite furnace-atomic absorption spectrometry (GF-AAS). For GF-AAS, the method limits of detection are 1.6, 0.04, and 0.5 mug L-1 for As, Cd, and Pb, respectively. For ICP-MS, the method limits of detection are 0.06, 0.01, and 0.38 mug L-1 for As, Cd, and Pb, respectively. The MS CSC of the 1R4F Reference Cigarette was collected in accordance with the Federal Trade Commission (FTC) smoking regime (35 mL puff volume of 2-s puff duration at an interval of 60 s) and the concentrations of As, Cd and Pb were 6.0+/-0.5, 69.3+/-2.8, and 42.0+/-2.1 ng/cigarette, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available