4.7 Article

Anisotropy of the elastic properties of crystalline cellulose Iβ from first principles density functional theory with Van der Waals interactions

Journal

CELLULOSE
Volume 20, Issue 6, Pages 2703-2718

Publisher

SPRINGER
DOI: 10.1007/s10570-013-0071-8

Keywords

Crystalline cellulose; Cellulose I beta; Density functional theory; Young's modulus

Funding

  1. Forest Products Laboratory under USDA [11-JV-11111129-086, 07-CR-11111120-093]
  2. Purdue Research Foundation
  3. National Science Foundation [CMMI-1131596]
  4. Directorate For Engineering
  5. Div Of Civil, Mechanical, & Manufact Inn [1131596] Funding Source: National Science Foundation

Ask authors/readers for more resources

In spite of the significant potential of cellulose nanocrystals as functional nanoparticles for numerous applications, a fundamental understanding of the mechanical properties of defect-free, crystalline cellulose is still lacking. In this paper, the elasticity matrix for cellulose I-beta with hydrogen bonding network A was calculated using ab initio density functional theory with a semi-empirical correction for van der Waals interactions. The computed Young's modulus is found to be 206 GPa along [001] (c-axis), 98 GPa along [010] (b-axis), and 19 GPa along [100] (a-axis). Full compliance matrices are reported for 1.0, 1.5 and 2.0 % applied strains Color contour surfaces that show variations of the Young's modulus and average Poisson's ratio with crystallographic direction revealed the extreme anisotropies of these important mechanical properties. The sensitivity of the elastic parameters to misalignments in the crystal were examined with 2D polar plots within selected planes containing specific bonding characteristics; these are used to explain the substantial variability in the reported experimental Young's moduli values. Results for the lattice directions [001], [010] and [100] are within the range of reported experimental and other numerical values.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available