4.5 Article

Effective medium approach to linear acoustics in bubbly liquids

Journal

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
Volume 111, Issue 1, Pages 168-173

Publisher

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.1427356

Keywords

-

Ask authors/readers for more resources

Linear wave propagation through a bubbly liquid has seen a resurgence of interest because of proposed corrections to the lowest-order approximation of an effective wave number obtained from Foldy's exact multiple scattering theory [Foldy, Phys. Rev. 67, 107 (1945)]. An alternative approach to wave propagation through a bubbly liquid reduces the governing equations for a two-phase medium to an effective medium. Based on this approach, Commander and Prosperetti [J. Acoust. Soc. Am. 85, 732 (1989)] derive an expression for the lowest-order approximation to an effective wave number. At this level of approximation the bubbles interact with only the mean acoustic field without higher-order rescattering. That is, the field scattered from a bubble may interact with one or more new bubbles in the distribution, but a portion of that scattered field may not be scattered back to any previous bubble. The current article shows that modifications to the results of Commander and Prosperetti lead to a new expression for the effective wave number, which properly accounts for all higher orders of multiple scattering. (C) 2002 Acoustical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available