4.7 Article

Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers

Journal

CELLULOSE
Volume 19, Issue 3, Pages 855-866

Publisher

SPRINGER
DOI: 10.1007/s10570-012-9684-6

Keywords

Kenaf fibers; Purification; Cellulose nanocrystals; Hydrolysis conditions

Funding

  1. Ministry of Higher Education (MOHE)
  2. Universiti Kebangsaan Malaysia (UKM) under FRGS [UKM-ST-07-FRGS0041-2009, UKM-DLP-2011-013]
  3. French Embassy in Kuala Lumpur
  4. Universiti Kebangsaan Malaysia (UKM)

Ask authors/readers for more resources

Cellulose nanocrystals (CNC) were first isolated from kenaf bast fibers and then characterized. The raw fibers were subjected to alkali treatment and bleaching treatment and subsequent hydrolysis with sulfuric acid. The influence of the reaction time on the morphology, crystallinity, and thermal stability of CNC was investigated. Fourier transform infrared spectroscopy showed that lignin and hemicellulose were almost entirely removed during the alkali and bleaching treatments. The morphology and dimensions of the fibers and acid-released CNC were characterized by field emission scanning electron microscopy and transmission electron microscopy. X-Ray diffraction analysis revealed that the crystallinity first increases upon hydrolysis and then decreases after long durations of hydrolysis. The optimal extraction time was found to be around 40 min during hydrolysis at 45 A degrees C with 65% sulfuric acid. The thermal stability was found to decrease as the hydrolysis time increased. The electrophoretic mobility of the CNC suspensions was measured using the zeta potential, and it ranged from -8.7 to -95.3 mV.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available