4.6 Article

Increases in GABA concentrations during cerebral ischaemia: a microdialysis study of extracellular amino acids

Journal

Publisher

BMJ PUBLISHING GROUP
DOI: 10.1136/jnnp.72.1.99

Keywords

-

Funding

  1. MRC [G9439390] Funding Source: UKRI
  2. Medical Research Council [G9439390] Funding Source: Medline

Ask authors/readers for more resources

Objectives: Increases in the extracellular concentration of the excitatory amino acids glutamate and aspartate during cerebral ischaemia in patients are well recognised. Less emphasis has been placed on the concentrations of the inhibitory amino acid neurotransmitters, notably gamma-amino-butyric acid (GABA), despite evidence from animal studies that GABA may act as a neuroprotectant in models of ischaemia, The objective of this study was to investigate the concentrations of various excitatory, inhibitory and non-transmitter amino acids under basal conditions and during periods of cerebral ischaemia in patients with head injury or a subarachnoid haemorrhage. Methods: Cerebral microdialysis was established in 12 patients with head injury (n=7) or subarachnoid haemorrhage (n=5). Analysis was performed using high performance liquid chromatography for a total of 19 (excitatory, inhibitory and non-transmitter) amino acids. Patients were monitored in neurointensive care or during aneurysm clipping. Results: During stable periods of monitoring the concentrations of amino acids were relatively constant enabling basal values to be established. In six patients, cerebral ischaemia was associated with increases (up to 1350 fold) in the concentration of GABA, in addition to the glutamate and aspartate. Parallel increases in the concentration of glutamate and GABA were found (r=0.71, p<0.005). Conclusions: The results suggest that, in the human brain, acute cerebral ischaemia is not accompanied by an imbalance between excitatory and inhibitory amino acids, but by an increase in all neurotransmitter amino acids. These findings concur with the animal models of ischaemia and raise the possibility of an endogenous GABA mediated neuroprotective mechanism in humans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available