4.5 Article

High-frequency stimulation of the subthalamic nucleus silences subthalamic neurons: A possible cellular mechanism in Parkinson's disease

Journal

NEUROSCIENCE
Volume 115, Issue 4, Pages 1109-1117

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0306-4522(02)00538-9

Keywords

depolarization-evoked bursting; depolarization-evoked activity suppression; silencing by tetanic subthalamic stimulation; action potential inactivation; Parkinson's disease

Categories

Ask authors/readers for more resources

The subtbalamic nucleus participates in the control of movement and is considered a surgical target in the treatment of parkinsonian symptoms. Using the rat brain in vitro slice technique we show that sustained high-frequency (>100 Hz) electrical stimulation (i.e., 'tetanic stimulation') of the nucleus, as used in humans to treat Parkinson's disease, silenced subthalamic neurons. Two main cell types were identified. 'Tonic cells' (68%) showed delayed inward rectification, fired continuously, switched to bursting and stopped firing when strongly depolarized with injected current. Tetanic stimulation of the nucleus induced a steady depolarization (approximate to18 mV) that triggered action potentials at a high rate followed by bursts and finally (approximate to25 s) totally silenced tonic cells. The control tonic activity was recovered rapidly (<10 s) after ending stimulation. 'Phasic cells' (25%) discharged a single initial brief burst of action potentials both when depolarized by prolonged current injection and tetanic stimulation and did not show inward rectification. An infrequent cell type called 'phasic-tonic' (7%) showed a mixed discharge. We suggest that the silencing effect of tetanic stimulation is not a frequency-dependent presynaptic depression and could result from the gradual inactivation of Na+-mediated action potentials. These findings suggest that the remission of parkinsonian symptoms by treatment with high-frequency electrical stimulation of the subthalamic nucleus in humans may primarily reside on its capacity to suppress the action potential activity of subtbalamic neurons. (C) 2002 IBRO. Published by Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available