4.7 Article

Self-reinforced cellulose nanocomposites

Journal

CELLULOSE
Volume 17, Issue 4, Pages 779-791

Publisher

SPRINGER
DOI: 10.1007/s10570-010-9427-5

Keywords

All-cellulose; Nanocomposite; Regenerated cellulose; Physical & structure properties

Funding

  1. UK Engineering and Physical Sciences Research Council (EPSRC) [EP/E007538/1]
  2. Engineering and Physical Sciences Research Council [EP/E007538/1] Funding Source: researchfish
  3. EPSRC [EP/E007538/1] Funding Source: UKRI

Ask authors/readers for more resources

A self-reinforced cellulosic material was produced exclusively from regenerated cellulose microcrystals. The level of reinforcement was controlled by tailoring the crystallinity of cellulose by controlling the dissolution of microcrystalline cellulose (MCC) before its regeneration process. After the cellulose regeneration a self-reinforced material was obtained in which cellulose crystals reinforced amorphous cellulose. This structure was produced by dissolution of MCC in a non-derivatising cosolvent N,N-dimethylacetamide/LiCl followed by subsequent cellulose regeneration in distilled H2O. The reduction of the overall crystallinity of self-reinforced regenerated cellulose was dependent on the dissolution time of the cellulose precursor. The crystallinity of regenerated cellulose was determined by wide angle X-ray diffraction. A reduction in crystal size from microcrystalline cellulose to regenerated cellulose was observed with increasing dissolution time in DMAc/LiCl cosolvent. The reduction in degree of crystallinity of regenerated cellulose led to a decrease in the tensile mechanical performance and thermal stability of the regenerated cellulose. The controlled dissolution of microcrystalline cellulose resulted in the modification of structural, physical, thermal properties and moisture uptake behaviour of regenerated cellulose.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available