4.7 Article

Extraction and characterization of native heteroxylans from delignified corn stover and aspen

Journal

CELLULOSE
Volume 16, Issue 4, Pages 661-675

Publisher

SPRINGER
DOI: 10.1007/s10570-009-9324-y

Keywords

Biomass; Biomass delignification; Plant cell wall; Glucuronoxylan; Hardwood xylan; Corn stover xylan; Xylan acetylation; Endoxylanase; Homo- and-heteronuclear NMR-spectroscopy; MALDI-TOF MS

Funding

  1. United States Department of Energy Office of the Biomass Program

Ask authors/readers for more resources

Dimethylsulfoxide-solubilized polysaccharides from delignified corn stover and aspen were characterized. The biomass was delignified by two different techniques; a standard acid chlorite and a pulp and paper QPD technique comprising chelation (Q), peroxide (P), and acid-chlorite (D). Major polysaccharides in all fractions were diversely substituted xylan. Xylan acetylation was intact after chlorite delignification and, as expected, xylan from QPD-delignified fraction was de-acetylated by the alkaline peroxide step. The study of DMSO-extractable xylans from chlorite-delignified biomass revealed major differences in native acetylation patterns between corn stover and aspen xylan. Xylan from cell walls of corn stover contains 2-O- and 3-O-mono-acetylated xylan and [MeGlcA-alpha-(1 -> 2)][3-OAc]-xylp units. In addition, aspen xylan also contains 2,3-di-O-acetylated xylose. 1,4-beta-d-xylp residues substituted with MeGlcA at O-2 position are absent in chlorite-delignified aspen xylan. Sugar composition in accord with NMR-spectroscopic data indicated that corn stover xylan is arabinosylated while aspen xylan is not. We have shown that corn stover xylan has similar structure with xylans from other plants of Poales order. No evidence was found to indicate the presence of 1,4-beta-d-[MeGlcA-alpha-(1 -> 2)][Ara-alpha-(1 -> 3)]-xylp in corn stover xylan fractions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available