4.8 Article

Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process

Journal

BIOMATERIALS
Volume 23, Issue 2, Pages 585-596

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0142-9612(01)00145-4

Keywords

cell adhesion; extracellular matrix (ECM); human bone marrow stromal cells (HBMSC); RGD-containing peptides; hybrid artificial material; osteointegration

Ask authors/readers for more resources

Cell adhesion directly influences cell growth, differentiation and migration as well as morphogenesis, integrity and repair. The extracellular matrix (ECM) elaborated by osteoblast cells constitutes a regulator of the cell adhesion process and then of the related phenomenon. These regulatory effects of ECM are mediated through integrins and some of them are able to bind RGD sequences. The aim of this study was to determine the role of the sequence and the structure of RGD-containing peptides (linear and cyclic) as well as their role in the cell adhesion process. Cell adhesion assays onto ECM proteins coated surfaces were performed using a range of linear and cyclic RGD-containing peptides. We showed a different human osteoprogenitor cell adhesion according to the coating for ECM proteins and for RGD-peptides. Inhibition assays using peptides showed different responses depending on the coated protein. Depending on the amino-acid sequence and the structure of the peptides (cyclic/linear), we observed 100% inhibition of cell adhesion onto vitronectin. These results suggest the importance of sequence, structure and conformation of the peptide, which may play a crucial function in the ligand/receptor interaction and/or in the stability of the interaction. (C) 2001 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available