4.7 Article

Kinetic theory for identical, frictional, nearly elastic spheres

Journal

PHYSICS OF FLUIDS
Volume 14, Issue 3, Pages 1228-1235

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1449466

Keywords

-

Ask authors/readers for more resources

We derive a simple kinetic theory for collisional flows of identical, slightly frictional, nearly elastic spheres that is based on a physically realistic model for a frictional collision between two spheres. When the coefficient of friction is small, the equations of balance for rotational momentum and energy can be solved in approximation. This permits the rotational temperature to be related to the translation temperature and the introduction of an effective coefficient of restitution in the rate of dissipation of translation fluctuation energy. With this incorporation of the additional loss of translational energy to friction and the rotational degrees of freedom, the structure of the resulting theory is the same as for frictionless spheres. (C) 2002 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available