4.7 Article

Cell prestress. II. Contribution of microtubules

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 282, Issue 3, Pages C617-C624

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00271.2001

Keywords

cytoskeleton; compression; energy; traction; tensegrity

Funding

  1. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [P01HL033009, R01HL065371] Funding Source: NIH RePORTER
  2. NHLBI NIH HHS [HL 65371, HL 33009] Funding Source: Medline

Ask authors/readers for more resources

The tensegrity model hypothesizes that cytoskeleton-based microtubules (MTs) carry compression as they balance a portion of cell contractile stress. To test this hypothesis, we used traction force microscopy to measure traction at the interface of adhering human airway smooth muscle cells and a flexible polyacrylamide gel substrate. The prediction is that if MTs balance a portion of contractile stress, then, upon their disruption, the portion of stress balanced by MTs would shift to the substrate, thereby causing an increase in traction. Measurements were done first in maximally activated cells (10 muM histamine) and then again after MTs had been disrupted (1 muM colchicine). We found that after disruption of MTs, traction increased on average by similar to13%. Because in activated cells colchicine induced neither an increase in intracellular Ca2+ nor an increase in myosin light chain phosphorylation as shown previously, we concluded that the observed increase in traction was a result of load shift from MTs to the substrate. In addition, energy stored in the flexible substrate was calculated as work done by traction on the deformation of the substrate. This result was then utilized in an energetic analysis. We assumed that cytoskeleton-based MTs are slender elastic rods supported laterally by intermediate filaments and that MTs buckle as the cell contracts. Using the post-buckling equilibrium theory of Euler struts, we found that energy stored during buckling of MTs was quantitatively consistent with the measured increase in substrate energy after disruption of MTs. This is further evidence supporting the idea that MTs are intracellular compression-bearing elements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available