4.6 Article

Fibronectin and vitronec tin induce AP-1-mediated matrix metalloproteinase-9 expression through integrin alpha(5)beta(1)/alpha(v)beta(3)-dependent Akt, ERK and JNK signaling pathways in human umbilical vein endothelial cells

Journal

CELLULAR SIGNALLING
Volume 23, Issue 1, Pages 125-134

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cellsig.2010.08.012

Keywords

Endothelial cells; Fibronectin; Vitronectin; MMP; Integrin; Signaling

Categories

Funding

  1. Korean Ministry of Education, Science, and Technology (MEST)
  2. MEST [2007-0054632, 2009-0054632]

Ask authors/readers for more resources

The activity of matrix metalloproteinases (MMPs), which selectively degrades the extracellular matrix (ECM), is critical in angiogenesis. Conversely, changes in ECM composition/structure alter the expression and activity of MMPs in various cell types. In the present study, we examined whether changes in ECM composition affect MMPs expression/activity of endothelial cells and thereby alter the surrounding ECM structure. Among the ECM molecules examined, fibronectin (FN) and vitronectin (VN) increased the expression and activity of MMP-9 in human umbilical vein endothelial cells (HUVECs). Both alpha(5)beta(1) and alpha(v)beta(3) integrins were involved in FN-induced MMP-9 expression. Also, FN-induced MMP-9 expression was found to be mediated by AP-1 transcription factors, including c-Jun, JunB, and JunD. Inhibitors or siRNAs specific to AP-1 activating signal transducers, including FAK-Src, PI3K/Akt, ERK, and JNK, abolished both FN-induced AP-1 activation and MMP-9 expression. VN-induced AP-1 activation and MMP-9 expression were also mediated by these AP-1 activating signal transducers in addition to p38 MAPK. Moreover, treatment with FN or VN resulted in increased degradation of collagen on HUVEC culture plates. Taken together, our data suggest that both fibronectin and vitronectin induce MMP-9 expression via the AP-1-activating signaling pathways in endothelial cells, and thereby stimulate degradation of surrounding collagen, leading to alterations in ECM structure and potentially the promotion of angiogenesis. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available