4.6 Article

Synergy in ERK activation by cytokine receptors and tyrosine kinase growth factor receptors

Journal

CELLULAR SIGNALLING
Volume 23, Issue 2, Pages 417-424

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cellsig.2010.10.016

Keywords

Growth hormone; Prolactin; EGF; PDGF; Signaling

Categories

Funding

  1. NIH [DK46395]

Ask authors/readers for more resources

Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) signal through EGF and PDGF receptors, which are important receptor tyrosine kinases (RTKs). Growth hormone (GM) and prolactin (PRL) are four helical bundle peptide hormones that signal via GHR and PRLR, members of the cytokine receptor superfamily. In this study, we examine crosstalk between signaling pathways emanating from these disparate receptor groups (RTKs and cytokine receptors). We find that GM and EGF specifically synergize for activation of ERK in murine preadipocytes. The locus of this synergy resides at the level of MEK activation, but not above this level (i.e., not at the level of EGFR, SHC, or Raf activation). Furthermore, dephosphorylation of the scaffold protein, KSR, at a critical serine residue is also synergistically promoted by GM and EGF, suggesting that GH sensitizes these cells to EGF-induced ERK activation by augmenting the actions of KSR in facilitating MEK-ERK activation. Similarly specific synergy in ERK activation is also detected in human T47D breast cancer cells by cotreatment with PRL and PDGF. This synergy also resides at the level of MEK activation. Consistent with this synergy, PRL and PDGF also synergized for c-fos-dependent transactivation of a luciferase reporter gene in T47D cells, indicating that events downstream of ERK activation reflect this signaling synergy. Important conceptual and physiological implications of these findings are discussed. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available