4.7 Article

Granulocyte macrophage-colony stimulating factor (GM-CSF) recruits immune cells to the pancreas and delays STZ-induced diabetes

Journal

JOURNAL OF PATHOLOGY
Volume 196, Issue 1, Pages 103-112

Publisher

WILEY
DOI: 10.1002/path.1013

Keywords

granulocyte macrophage-colony stimulating factor; diabetes; insulitis; streptozotocin

Funding

  1. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK054063] Funding Source: NIH RePORTER
  2. NIDDK NIH HHS [DK54063] Funding Source: Medline

Ask authors/readers for more resources

Granulocyte macrophage-colony stimulating factor (GM-CSF) is one of the most widely used growth factors for enhancing immune responses and is known to recruit and activate antigen-presenting cells (APCs). This study hypothesized that overexpression of this cytokine within the pancreatic beta-cells would recruit, expand, and activate APCs. The question was whether this would lead to tolerance or autoimmunity to pancreatic antigens. This possibility was tested by preparing transgenic mice (ins-GM-CSF) whose islets expressed marine GM-CSF. By 6-8 weeks of age, these mice developed a profound mononuclear cell infiltration that often overwhelmed the exocrine pancreas, although no changes in enzyme or hormone function were apparent. The majority of the mononuclear infiltrate within the pancreas was identified as F4/80+ macrophages. Transgenic ins-GM-CSF mice had splenomegaly due to a massive increase in the macrophage population. Additionally, mononuclear cells were found within the livers of transgenic mice, with F4/80+ cells also identified within the infiltrate, indicating that GM-CSF-activated mononuclear cells circulated to organs other than the pancreas. To assess the disease potential, this study tested whether macrophage recruitment to the pancreas might accelerate or protect the islets from diabetes. It was found that the induction of diabetes by low-dose streptozotocin (STZ) was delayed and reduced within ins-GM-CSF transgenic mice, in comparison with negative littermates. Together, these data highlight the role of GM-CSF in recruiting APCs such as macrophages. Advanced cellular infiltration does not overtly harm, and may even protect, pancreatic function, as seen with the delay in chemically induced diabetes. Copyright (C) 2001 John Wiley Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available