4.7 Article Proceedings Paper

Evaluation of ultra-high temperature ceramics for aeropropulsion use

Journal

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
Volume 22, Issue 14-15, Pages 2757-2767

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0955-2219(02)00140-1

Keywords

borides; composites; corrosion; engine components; thermal shock resistance

Ask authors/readers for more resources

Among the ultra-high temperature ceramics (UHTC) are a group of materials consisting of zirconium diboride or hafnium diboride plus silicon carbide, and in some instances, carbon. These materials offer a good combination of properties that make them candidates for airframe leading edges on sharp-bodied reentry vehicles. These UHTC perform well in the environment for such applications, i.e. air at low pressure. The purpose of this study was to examine three of these materials under conditions more representative of a propulsion environment, i.e. higher oxygen partial pressure and total pressure. Results of strength and fracture toughness measurements, furnace oxidation, and high velocity thermal shock exposures are presented for ZrB2 plus 20 vol.% SiC, ZrB2 plus 14 vol.% SiC plus 30 vol.% C, and SCS-9a SiC fiber reinforced ZrB2 plus 20 vol.% SiC. The poor oxidation resistance of UHTCs is the predominant factor limiting their applicability to propulsion applications. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available