4.7 Article

Diurnal courses of ammonium net uptake by the roots of adult beech (Fagus sylvatica) and spruce (Picea abies) trees

Journal

PLANT AND SOIL
Volume 240, Issue 1, Pages 23-32

Publisher

SPRINGER
DOI: 10.1023/A:1015831304911

Keywords

carbohydrates; N compounds; organic acids; regulation; xylem flow

Ask authors/readers for more resources

Differences in ammonium net uptake by the roots of beech (Fagus sylvatica L.) and spruce (Picea abies (L.) Karst) trees between day and night were examined during the growing seasons in 1995 and 1996 using the depletion technique. In addition, diurnal courses of ammonium net uptake of both species were analysed in five sets of uptake experiments in May and September 1997 and were related (1) to the content of carbohydrates, organic acids and total soluble non protein N (TSNN) in the fine roots, and (2) to xylem flow densities and soil temperature. During the growing seasons 1995 and 1996, ammonium net uptake of beech was significantly lower during the night than during the day at 5 of 8 dates of measurement. On average, uptake rates during the night amounted to 50% of the uptake rates during the day. In spruce, the mean values of ammonium net uptake rates determined were similar between day and night during both growing seasons. In beech, the assessment of diurnal courses showed highest ammonium uptake rates during noon and in the afternoon and minima at midnight. In May 1997, comparable, but less pronounced diurnal patterns of ammonium uptake were observed in spruce, whereas in September 1997, ammonium uptake by spruce was constant during the day. Since no distinct differences in carbohydrate and organic acid contents in fine roots were observed during the diurnal courses and since the addition of sucrose into the artificial soil solutions root tips were exposed to did not alter ammonium uptake, depression of uptake by C- and/or energy limitation during night could be excluded. The TSNN contents in the fine roots of beech (May and September 1997) and spruce (May 1997) showed a diurnal pattern inverse to ammonium uptake. It is concluded that the enrichment of TSNN compounds during night that is apparently caused by a reduction of xylem transport is responsible for the down-regulation of ammonium net-uptake.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available