4.8 Article

AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling

Journal

PLANT CELL
Volume 14, Issue 3, Pages 589-597

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.010354

Keywords

-

Ask authors/readers for more resources

Arabidopsis root architecture is regulated by shoot-derived signals such as nitrate and auxin. We report that mutations in the putative auxin influx carrier AUX1 modify root architecture as a result of the disruption in hormone transport between indole-3-acetic acid (IAA) source and sink tissues. Gas chromatography-selected reaction monitoring-mass spectrometry measurements revealed that the aux1 mutant exhibited altered IAA distribution in young leaf and root tissues, the major IAA source and sink organs, respectively, in the developing seedling. Expression studies using the auxin-inducible reporter IAA2::uidA revealed that AUX1 facilitates IAA loading into the leaf vascular transport system. AUX1 also facilitates IAA unloading in the primary root apex and developing lateral root primordium. Exogenous application of the synthetic auxin 1-naphthylacetic acid is able to rescue the aux1 lateral root phenotype, implying that root auxin levels are suboptimal for lateral root primordium initiation in the mutant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available