4.2 Article

Decreased MiR-200a/141 Suppress Cell Migration and Proliferation by Targeting PTEN in Hirschsprung's Disease

Journal

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
Volume 34, Issue 2, Pages 543-553

Publisher

KARGER
DOI: 10.1159/000363021

Keywords

HSCR; 3 '-UTR; Neural crest cell; Neural development; Pediatric

Funding

  1. Natural Science Foundation of China [NSFC 81370473]
  2. Natural Science Foundation of Jiangsu Province of China [BK20131388]
  3. Scientific Research Project of Jiangsu Provincial Department of health [H201342]
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Ask authors/readers for more resources

Background/Aims: Hirschsprung's disease (HSCR) is a genetic disorder of neural crest development. In this study, we investigated whether and how miR-200a and miR-141, belonging to miR-200 family, were involved in the pathogenesis of HSCR. Methods: Quantitative real time PCR and Western blot were used to detect the levels of miRNA, mRNAs, and proteins in colon tissues from 88 HSCR patients and 75 controls. The direct regulation of specific mRNA by miRNAs was validated by dual-luciferase reporter assay and RNA interference in cell lines. Transwell assays, CCK8 assay, and flow cytometry were inplemented to measure viability and activities of human 293T and SH-SY5Y cells, respectively. Results: Aberrant suppression of miR-200a was observed in colon tissues of HSCR patients. A decreased level of miR-200a and miR-141 correlated with increased levels of PTEN mRNA and protein. The Dual-Luciferase reporter gene assay demonstrated that miR-200a and miR-141 binded directly to 3'UTR of PTEN and resulting in the inhibition of PTEN. The reductions in miR-200a and miR-141 inhibited migration and proliferation of 293T and SH-SY5Y cells through up-regulating the expression of PTEN. Moreover, knocking-down of PTEN rescued the extent of suppressed cell migration and proliferation induced by miR-200a and miR-141. Conclusions: The miR-200 family may play a crucial role in the pathogenesis of HSCR by co-regulating PTEN. Copyright (C) 2014 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available