4.7 Article

Quantitative trait locus mapping in chickens by selective DNA pooling with dinucleotide microsatellite markers by using purified DNA and fresh or frozen red blood cells as applied to marker-assisted selection

Journal

POULTRY SCIENCE
Volume 81, Issue 3, Pages 283-292

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/ps/81.3.283

Keywords

quantitative trait locus mapping; chicken; blood; microsatellite; selective DNA pooling

Ask authors/readers for more resources

Many large, half-sib sire families are an integral component of chicken genetic improvement programs. These family structures include a sufficient number of individuals for mapping quantitative trait loci (QTL) at high statistical power. However, realizing this statistical power through individual or selective genotyping is yet too costly to be feasible under current genotyping methodologies. Genotyping costs can be greatly reduced through selective DNA pooling, involving densitometric estimates of marker allele frequencies in pooled DNA samples. When using dinucleotide microsatellite markers, however, such estimates are often confounded by overlapping shadow bands and can be confounded further by differential amplification of alleles. In the present study a shadow correction procedure provided accurate densitometric estimates of allele frequency for dinucleotide microsatellite markers in pools made from chicken purified DNA samples, fresh blood samples, and frozen-thawed blood samples. In a retrospective study, selective DNA pooling with thawed blood samples successfully identified two QTL previously shown by selective genotyping to affect resistance in chickens to Marek's disease. It is proposed that use of selective DNA pooling can provide relatively low-cost mapping and use in marker-assisted selection of QTL that affect production traits in chickens.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available