4.7 Article

PGE(2) selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons

Journal

NATURE NEUROSCIENCE
Volume 5, Issue 1, Pages 34-40

Publisher

NATURE AMERICA INC
DOI: 10.1038/nn778

Keywords

-

Categories

Ask authors/readers for more resources

Despite the crucial role that prostaglandins (PGs) have in the sensitization of the central nervous system to pain, their cellular and molecular targets leading to increased pain perception have remained elusive. Here we investigated the effects of PGE(2) on fast synaptic transmission onto neurons in the rat spinal cord dorsal horn, the first site of synaptic integration in the pain pathway. We identified the inhibitory (strychnine-sensitive) glycine receptor as a specific target of PGE(2). PGE(2), but not PGF(2 alpha), PGD(2) or PGI(2), reduced inhibitory glycinergic synaptic transmission in low nanomolar concentrations, whereas GABA(A), AMPA and NMDA receptor-mediated transmission remained unaffected. Inhibition of glycine receptors occurred via a postsynaptic mechanism involving the activation of EP2 receptors, cholera-toxin-sensitive G-proteins and cAMP-dependent protein kinase. Via this mechanism, PGE(2) may facilitate the transmission of nociceptive input through the spinal cord dorsal horn to higher brain areas where pain becomes conscious.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available