4.5 Article

Small-scale topography of 433 Eros from laser altimetry and imaging

Journal

ICARUS
Volume 155, Issue 1, Pages 51-74

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/icar.2001.6750

Keywords

asteroid surfaces; asteroids; Eros; regoliths; tectonics

Ask authors/readers for more resources

The NEAR laser rangefinder (NLR) obtained more than 16 million range returns from asteroid 433 Eros. We present the first results from analyses of topographic profiles interpreted with the aid of simultaneous, boresighted images obtained by the NEAR multispectral imager (MSI). The location of the NLR boresight relative to that of MSI is determined by detailed correlations of ranging data and simultaneous images, including cases where the laser boresight slewed off and on the limb of the asteroid and cases where the laser illuminated a boulder close to the time of an image. In the data presented, the precision of the range measurements is about I in, with the minimum spot diameter under 5 m, and successive spots are contiguous or overlapping. Elevation on the irregular object Eros is given with respect to the gravitational and centrifugal potential. Landslides in craters are characterized. Possible crater benches are identified. Examples of infilled craters are presented. These observations suggest a depth of unconsolidated regolith, which is subject to sliding, of typically a few tens of meters. An example of structurally controlled cratering is presented. Examples of tectonic features are described. Surface roughness on Eros is approximately self-affine from scales of a few meters to hundreds of meters. A comparison of fractal statistics shows that Eros is extremely rough on observed scales, when compared to terrestrial a'a lava on submeter scales and undisturbed lunar regolith on subcentimeter scales. (C) 2002 Elsevier Science (USA).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available