4.7 Article

A fractional calculus approach to the description of stress and strain localization in fractal media

Journal

CHAOS SOLITONS & FRACTALS
Volume 13, Issue 1, Pages 85-94

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0960-0779(00)00238-1

Keywords

-

Ask authors/readers for more resources

Evidence of fractal patterns in materials with disordered microstructure under tensile loads is undeniable. Unfortunately fractal functions cannot be solution of classical differential equations. Hence a new calculus must be developed to handle fractal processes. In this paper, we use the local fractional calculus operators recently introduced by K.M. Kolwankar [Studies of fractal structures and processes using methods of fractional calculus. PhD thesis, University of Pune, India, 1998]. Through these new mathematical tools we get the static and kinematic equations that model the uniaxial tensile behavior of heterogeneous materials. The fractional operators respect the non-integer (fractal) physical dimensions of the quantities involved in the governing equations, while the virtual work principle highlights the static-kinematic duality among them. The solutions obtained from the model are fractal and yield to scaling power laws characteristic of the nominal quantities, i.e., they reproduce the size effects due to stress and strain localization. (C) 2001 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available