4.4 Article

Iodine chemistry reflects productivity and denitrification in the Arabian Sea: evidence for flux of dissolved species from sediments of western India into the OMZ

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0967-0645(02)00038-3

Keywords

-

Categories

Ask authors/readers for more resources

Dissolved iodine species and total iodine concentrations were measured in the Arabian Sea during the Spring Intermonsoon of 1995. Two separate regimes of iodine chemistry are highlighted in this study: (1) the well-oxygenated surface layer (WOSL) where iodide concentrations were in the range of 158-558 nM, and (2) the oxygen minimum zone (OMZ) where total iodine concentrations [primarily as iodide and in excess to the oceanic iodine/salinity ratio of similar to13] varied from similar to200 to 950 nM. Iodine data in the WOSL of the Arabian Sea are contrasted with data from the Ben-nuda Atlantic Time-series Station (BATS), the Hawaii Ocean Time-series Station ALOHA (HOT), VERTEX in the Pacific and the Black Sea. Total iodine concentrations in excess of 400 nM were observed in eastern portions of the OMZ. The eastern portion of the basin has a permanent denitrification zone as well as high concentrations of dissolved Mn2+ (d-Mn2+) and iodide. While there is precedent for high values of iodide and total iodine in several other isolated basins, this is the first report of such values in open-ocean waters. Potential sources of excess total iodine to the OMZ include advection along isopycnals, from hydrothermal vents or margin sediments; atmospheric deposition; and remineralization of sinking particulate organic iodine (POI) associated with elevated productivity in surface waters. We estimate that only 3.6% of the excess total iodine can result from remineralization of sinking POI from the WOSL to the OMZ. Advection from margin sediments off of India is the most plausible source of iodine to the OMZ and contributes similar to96% of the total excess iodine to the OMZ. I- is maintained as the dominant form of iodine via in situ reduction of iodate by bacteria. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available