4.5 Article

Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: Correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium

Journal

TOXICOLOGICAL SCIENCES
Volume 65, Issue 1, Pages 18-25

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/65.1.18

Keywords

hydrogen sulfide; pharmacokinetics; cytochrome oxidase; nasal toxicity; rat; inhalation

Categories

Ask authors/readers for more resources

Hydrogen sulfide (H2S) is an important brain, lung, and nose toxicant. Inhibition of cytochrome oxidase is the primary biochemical effect associated with lethal H2S exposure. The objective of this study was to evaluate the relationship between the concentration of sulfide and cytochrome oxidase activity in target tissues following acute exposure to sublethal concentrations of inhaled H2S. Hindbrain, lung, liver, and nasal (olfactory and respiratory epithelial) cytochrome oxidase activity and sulfide concentrations were determined in adult male CD rats immediately after a 3-h exposure to H2S (10, 30, 80, 200, and 400 ppm). We also determined lung sulfide and sulfide metabolite concentrations at 0, 1.5, 3, 3.25, 3.5, 4, 5, and 7 h after the start of a 3-h H2S exposure to 400 ppm. Lung sulfide concentrations increased during H2S exposure and rapidly returned to endogenous levels within 15 min after the cessation of the 400-ppm exposure. Lung sulfide metabolite concentrations were transiently increased immediately after the end of the 3-h H2S exposure. Decreased cytochrome oxidase activity was observed in the olfactory epithelium following exposure to greater than or equal to 30 ppm H2S. Increased olfactory epithelial sulfide concentrations were observed following exposure to 400 ppm H2S. Hindbrain and nasal respiratory epithelial sulfide concentrations were unaffected by acute H2S exposure. Nasal respiratory epithelial cytochrome oxidase activity was reduced following acute exposure to greater than or equal to 30 ppm H2S. Liver sulfide concentrations were increased following exposure to greater than or equal to 200 ppm H2S and cytochrome oxidase activity was increased following inhalation exposure to greater than or equal to 10 ppm H2S. Our results suggest that cytochrome oxidase inhibition is a sensitive biomarker of H2S exposure in target tissues, and sulfide concentrations are unlikely to increase postexposure in the brain, lung, or nose following a single 3-h exposure to less than or equal to30 ppm H2S.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available