4.2 Article

A Ceramide-binding C1 Domain Mediates Kinase Suppressor of Ras Membrane Translocation

Journal

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
Volume 24, Issue 3-4, Pages 219-230

Publisher

KARGER
DOI: 10.1159/000233248

Keywords

KSR1; C1 Domain; Ceramide

Funding

  1. NIH [RO1 CA105125, ROI CA42385]
  2. NATIONAL CANCER INSTITUTE [R01CA042385, R01CA105125] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Genetic and biochemical data support Kinase Suppressor of Ras 1 (KSR1) as a positive regulator of the Ras-Raf-MAPK pathway, functioning as a kinase and/or scaffold to regulate c-Raf-1 activation. Membrane translocation mediated by the KSR1 CA3 domain, which is homologous to the atypical PKC C1 lipid-binding domain, is a critical step of KSR1-mediated c-Raf-1 activation. In this study, we used an ELISA to characterize the KSR1 CA3 domain as a lipid-binding moiety. Purified GST-KSR1-CA3 protein effectively binds ceramide but not other lipids including 1,2-diacylglyceol, dihydroceramide, ganglioside GM1, sphingomyelin and phosphatidylcholine. Upon epidermal growth factor stimulation of COS-7 cells, KSR1 translocates into and is activated within glycosphingolipid-enriched plasma membrane platforms. Pharmacologic inhibition of ceramide generation attenuates KSR1 translocation and KSR1 kinase activation in COS-7 cells. Disruption of two cysteines, which are indispensable for maintaining ternary structure of all C1 domains and their lipid binding capability, mitigates ceramide-binding capacity of purified GST-KSR1-CA3 protein, and inhibits full length KSR1 membrane translocation and kinase activation. These studies provide evidence for a mechanism by which the second messenger ceramide can target proteins to subcellular compartments in the process of transmembrane signal transduction. Copyright (C) 2009 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available