4.5 Review

Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production

Journal

ANIMAL BEHAVIOUR
Volume 63, Issue -, Pages 407-418

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1006/anbe.2001.1912

Keywords

-

Ask authors/readers for more resources

Recent work on human vocal production demonstrates that certain irregular phenomena seen in human pathological voices and baby crying result from nonlinearities in the vocal production system. Equivalent phenomena are quite common in nonhuman mammal vocal repertoires. In particular, bifurcations and chaos are ubiquitous aspects of the normal adult repertoire in many primate species. Here we argue that these phenomena result from properties inherent in the peripheral production mechanism, which allows individuals to generate highly complex and unpredictable vocalizations without requiring equivalently complex neural control mechanisms. We provide examples from the vocal repertoire of rhesus macaques, Macaca mulatta, and other species illustrating the different classes of nonlinear phenomena, and review the concepts from nonlinear dynamics that explicate these calls. Finally, we discuss the evolutionary significance of nonlinear vocal phenomena. We suggest that nonlinear phenomena may subserve individual recognition and the estimation of size or fluctuating asymmetry from vocalizations. Furthermore, neurally 'cheap' unpredictability may serve the valuable adaptive function of making chaotic calls difficult to predict and ignore. While noting that nonlinear phenomena are in some cases probably nonadaptive by-products of the physics of the sound-generating mechanism, we suggest that these functional hypotheses provide at least a partial explanation for the ubiquity of nonlinear calls in nonhuman vocal repertoires. 2002 The Association for the Study of Animal Behaviour.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available