4.7 Article

The evolution of outdoor copper patina

Journal

CORROSION SCIENCE
Volume 44, Issue 3, Pages 425-450

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0010-938X(01)00081-6

Keywords

copper; X-ray diffraction; atmospheric corrosion

Ask authors/readers for more resources

A general reaction scheme has been deduced which describes the evolution of the copper patina, including altogether eight compounds, formed upon exposure to outdoor atmospheric environments. The scheme is based on data obtained from altogether 39 exposure sites, using a recently developed method for quantitative X-ray powder diffraction analysis of up to 8 year old patina still adhering to the copper substrate. In all cases, cuprite forms initially and continuously throughout the atmospheric exposure. Three main sequences have been identified on sheltered copper, representing different reaction routes in sulfur- or chlorine-dominated environments. In less sulfur-polluted environments, posnjakite forms on the cuprite as a precursor to brochantite. In more sulfur-polluted environments, strandbergite is a precursor to antlerite. Both reaction routes may operate simultaneously and the main route may change from the more sulfur-polluted to the less polluted route, as a result of decreased pollutant levels. In chlorine-dominated environments the initial cuprite formation is followed by nantokite and atacamite. By far the most dominating sequence on unsheltered copper includes cuprite, followed by posnjakite and brochantite formation. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available