4.4 Article

Ionic mechanisms of regulatory volume increase (RVI) in the human hepatoma cell-line HepG2

Journal

PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY
Volume 443, Issue 5-6, Pages 779-790

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s00424-001-0765-x

Keywords

amiloride; cation channel; cell volume regulation; flufenamate; gadolinium; HepG2; liver; Na+/H+ antiport; Na+/K+-ATPase; Na+-K+-2Cl(-) symport

Categories

Ask authors/readers for more resources

We studied the effects of hypertonic stress on ion transport and cell volume regulation (regulatory volume increase; RVI) in the human tumor cell-line HepG2. Ion conductances were monitored in intracellular current-clamp measurements with rapid ion-substitutions and in whole-cell patch-clamp recordings; intracellular pH buffering capacity and activation of Na+/H+ antiport were determined fluorometrically; the rates of Na+-K(+)2Cl- symport and Na+/K+-ATPase were quantified on the basis of time-dependent and furosemide- or ouabain-sensitive Rb-86(+) uptake, respectively; changes in cell volume were recorded by means of confocal laser-scanning microscopy. It was found that hypertonic conditions led to the activation of a cation conductance that was inhibited by Gd3+, flufenamate as well as amiloride, but not by benzamil or ethyl-isopropyl-amiloride (EIPA). Most likely, this cation conductance was non-selective for Na+ over K+. Hypertonic stress did not change K+ conductance, whereas possible changes in Cl- conductance remain ambiguous. The contribution of Na+/H+ antiport to the RVI process appeared to be minor. Under hypertonic conditions an approximately 3.5-fold stimulation of NaK+-2Cl- symport was observed but this transporter did not significantly contribute to the overall RVI process. Hypertonic stress did not increase the activity of Na+/K(+)ATPase, which even under isotonic conditions appeared to be working at its limit. It is concluded that the main mechanism in the RVI of HepG2 cells is the activation of a novel non-selective cation conductance. In contrast, there is little if any contribution of K+ conductance, Na+/H+ antiport, Na+-K+-2Cl- symport, and Na+/K+-ATPase to this process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available