4.6 Article

The influences of ambiguity phase aberration profiles on focusing quality in the very near field - Part I: Single range focusing on transmission

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/58.981384

Keywords

-

Ask authors/readers for more resources

Most phase aberration measurement algorithms have an ambiguity for constant and tilted phase aberration profiles. Based on the Fresnel (near field) approximation with single range focusing and the Fraunhofer (far field) approximation, constant and tilted phase aberration profiles change the position of the focal point only and do not influence the image focusing quality. Therefore, ambiguity phase aberration profiles are generally considered to be harmless and ignored in those algorithms and related theoretical analyses. However, Fresnel and Fraunhofer approximations may become invalid under many medical ultrasound imaging situations, e.g., when the imaging field is in the very near field (f-number similar to 1). In the very near field, although it is known that constant and tilted phase aberration profiles may degrade the focusing quality, it seems that there is a lack of quantitative analysis results in the literature about their influences, and this is the purpose of the current paper. In this paper, a quantitative analysis with a very near field approximation is performed for single range focusing on transmission, which is a commonly used transmission focusing method in medical ultrasound imaging. The tolerable levels of constant and tilted phase aberration profiles are derived as a function of the imaging system's f-number and wavelength. Because some phase aberration measurement algorithms may also have an ambiguity for quadratic phase aberration profiles, they are also included in the analysis. The theoretical results are compare with numerical and simulation results. These results have shown that the influences of tilted and quadratic phase-aberration profiles can be ignored only under certain conditions in the very near field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available