4.5 Article

Electrical Stimulation Promotes BDNF Expression in Spinal Cord Neurons Through Ca2+- and Erk-Dependent Signaling Pathways

Journal

CELLULAR AND MOLECULAR NEUROBIOLOGY
Volume 31, Issue 3, Pages 459-467

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10571-010-9639-0

Keywords

BDNF; Calcium; Electrical stimulation; Erk; Neuron

Funding

  1. Shanghai leading academic discipline project [S30201, S30205]
  2. Shanghai science and technology committee [09410706200]

Ask authors/readers for more resources

Brief electrical stimulation has been shown to be effective in promoting neuronal regeneration following peripheral nerve injury. These effects are thought to be mediated largely by the upregulation of the expression of brain-derived neurotrophic factor (BDNF) in spinal cord neurons. However, the molecular mechanisms by which electrical stimulation can promote BDNF expression are not known. The mechanism involved in BDNF expression after electrical stimulation was explored in this study. Immunohistochemistry and Western blotting were used to test BDNF expression. Confocal microscopy was utilized to study intracellular Ca2+ volume. Immunohistochemistry and Western blotting confirmed that brief electrical stimulation increased BDNF expression in spinal cord neurons both in vivo and in vitro. Treatment of cultured neurons with nifedipine, an inhibitor of voltage-gated calcium channels, significantly reduced the BDNF increase produced by electrical stimulation, and an inhibitor of Erk completely abolished the effect of electrical stimulation. Levels of BDNF expression in the presence of the Erk inhibitor were lower that in unstimulated and untreated controls, indicating that Erk activation is required to maintain baseline levels of BDNF. Confocal microscopy using a Ca2+-sensitive fluorochrome revealed that electrical stimulation is accompanied by an increase in intracellular Ca2+ levels; the increase was partly blocked by nifedipine. These findings argue that electrical stimulation increases BDNF expression in spinal cord neurons by activating a Ca2+- and Erk-dependent signaling pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available