4.5 Article

Synaptic Degeneration of Retinal Ganglion Cells in a Rat Ocular Hypertension Glaucoma Model

Journal

CELLULAR AND MOLECULAR NEUROBIOLOGY
Volume 29, Issue 4, Pages 575-581

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10571-009-9349-7

Keywords

Glaucoma; Synapse; c-fos; Retinal ganglion cell; Ocular hypertension

Funding

  1. Guangdong National Science Foundation, China [8451008901000852]
  2. National Science Foundation of China [30801272]

Ask authors/readers for more resources

Aims Glaucoma is a common neurodegenerative disease that affects retinal ganglion cells (RGCs) and their axons. Little is known of the synaptic degeneration involved in the pathophysiology of glaucoma. Here we used an experimental ocular hypertension model in rats to investigate this issue. Methods Elevated intraocular pressure (IOP) was induced by laser coagulation of the episcleral and limbal veins. RGCs were retrogradely labeled with Fluoro-Gold (FG). The c-fos protein was used as a neuronal connectivity marker. Expression of c-fos in the retinas was investigated by immunohistochemistry at 5 days and 2 weeks after the induction of ocular hypertension. Both surviving RGCs as revealed by retrograde FG-labeled and c-fos-labeled RGCs were counted. Results The c-fos protein was mainly expressed in the nuclei and nucleoli of cells in the ganglion cell layer and inner nuclear layer in the normal retina. We also confirmed that c-fos was also expressed in the nuclei and nucleoli of RGCs retrogradely labeled with FG. There was no significant RGC loss at 5 days but about 13% RGC loss at 2 weeks after the induction of ocular hypertension. The number of RGCs expressing c-fos was significantly lower in the experimental animals at both 5 days and 2 weeks than normal. Conclusion Our study suggests that there is synaptic disconnection for RGCs after ocular hypertension and it may precede the cell death in the early stage. It may provide insight into novel therapeutic strategies to slow the progress of glaucoma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available