4.7 Article

Potentiation of Fas-mediated apoptosis by an engineered glycosylphosphatidylinositol-linked Fas

Journal

CELL DEATH AND DIFFERENTIATION
Volume 9, Issue 3, Pages 329-339

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.cdd.4400960

Keywords

GPI; Fas; apoptosis; microdomains

Ask authors/readers for more resources

FasL and TRAIL are apoptotic ligands of the TNF-like cytokines family, acting via activation of the transmembrane death domain containing receptors Fas for FasL, and DR4 or DR5 for TRAIL. A glycosylphosphatidylinositol-linked TRAIL receptor called DcR1 behaves as a decoy receptor inhibiting TRAIL-mediated cell death in several cellular systems. We engineered and stably expressed a chimeric GPI-linked Fas receptor (Fas-GP1) in T-lymphocyte cell lines constitutively expressing functional transmembrane Fas. Surprisingly, despite lacking the death domain region of functional Fas, Fas-GPI was able to significantly increase Fas-mediated cell death triggered by membrane bound or soluble FasL, whereas engagement of Fas-GPI alone did not trigger apoptosis. This potentiating effect, but not transmembrane Fas activation, was selectively inhibited by protein kinase C activation with phorbol esters, demonstrating that Fas-GPI activated a specific synergistic signal transduction pathway. Fas-GPI and transmembrane Fas were localized in distinct membrane compartments, since Fas-GPI, but not transmembrane Fas, was found in the glycolipid-rich membrane microdomains. These results suggest that apoptosis induced by members of this ligand/receptors family may be differentially modulated through other and parallel signalling pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available