4.5 Article

Acquisition of inorganic carbon by the marine diatom Thalassiosira weissflogii

Journal

FUNCTIONAL PLANT BIOLOGY
Volume 29, Issue 2-3, Pages 301-308

Publisher

C S I R O PUBLISHING
DOI: 10.1071/PP01199

Keywords

-

Categories

Ask authors/readers for more resources

Recent data on the physiology of inorganic carbon acquisition by the model marine diatom Thalassiosira weissflogii (Grunow) demonstrate the importance of the catalytic equilibration of HCO3- and CO2 by carbonic anhydrases located in the periplasm and in the cytoplasm. These enzymes can use Zn, Co or Cd as their metal centre, and their activity increases at low ambient CO2. The silica frustule provides buffering for extracellular CA activity. The transmembrane transport of CO2 may occur by passive diffusion. Under CO2 limitation, the cytoplasmic HCO3- is used to form malate and oxaloacetic acid via phosphoenolpyruvate carboxylase. It appears that subsequent decarboxylation of these compounds in the chloroplast regenerates CO, near the site of Rubisco, and thus provides the organism with an effective unicellular C-4 photosynthetic pathway. These results, together with other published data, bring up two major questions regarding inorganic carbon acquisition in diatoms: What is the major species of inorganic carbon (CO2 or HCO3-) transported across the membrane under natural conditions? And what is the form of carbon (inorganic or organic) accumulated by the cells?.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available