4.7 Article

Segmentation of ultrasound B-mode images with intensity inhomogeneity correction

Journal

IEEE TRANSACTIONS ON MEDICAL IMAGING
Volume 21, Issue 1, Pages 48-57

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/42.981233

Keywords

contrast enhancement; intensity inhomogeneity; Markov random field; segmentation; tissue classification; ultrasound

Ask authors/readers for more resources

Displayed ultrasound (US) B-mode images often exhibit tissue intensity inhomogeneities dominated by nonuniform beam attenuation within the body. This is a major problem for intensity-based, automatic segmentation of video-intensity images because conventional threshold-based or intensity-statistic-based approaches do not work well in the presence of such image distortions. Time gain compensation (TGC) is typically used in standard US machines in an attempt to overcome this. However this compensation method is position-dependent which means that different tissues in the same TGC time-range (or corresponding depth range) will be, incorrectly, compensated by the same amount. Compensation should really be tissue-type dependent but automating this step is difficult. The main contribution of this paper is to develop a method for simultaneous estimation of video-intensity inhomogeities and segmentation of US image tissue regions. The method uses a combination of the maximum a posteriori (MAP) and Markov random field (MRF) methods to estimate the US image distortion field assuming it follows a multiplicative model while at the same time labeling image regions based on the corrected intensity statistics. The MAP step is used to estimate the intensity model parameters while the MRF step provides a novel way of incorporating the distributions of image tissue classes as a spatial smoothness constraint. We explain how this multiplicative model can be related to the ultrasonic physics of image formation to justify our approach. Experiments are presented on synthetic images and a gelatin phantom to evaluate quantitatively the accuracy of the method. We also discuss qualitatively the application of the method to clinical breast and cardiac US images. Limitations of the method and potential clinical applications are outlined in the conclusion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available