4.2 Article

Microfluidics for Applications in Cell Mechanics and Mechanobiology

Journal

CELLULAR AND MOLECULAR BIOENGINEERING
Volume 4, Issue 4, Pages 591-602

Publisher

SPRINGER
DOI: 10.1007/s12195-011-0209-4

Keywords

Cell and molecular mechanics; Mechanobiology; Microfluidics; Microdevices; Human; Diseases; Mechanotransduction

Ask authors/readers for more resources

Cell mechanics is a highly interdisciplinary research area which has made significant progress over the last decade, particularly in the study of human diseases. In diseases such as malaria and cancer, diseased cells undergo changes in both composition and organization of its cellular structures, which may eventually manifest as changes in the cell mechanical properties such as size and shape, deformability and cell adhesion. Despite the development of state-of-the-art experimental tools to manipulate and probe the cellular mechanical properties, microfluidics has emerged as an enabling technology for study of cell and molecular mechanics due to its numerous inherent advantages including small length scale, reduced sample and reagent volumes and low device cost. This paper presents an overview of the recent efforts in the study of cellular biomechanics using microfluidic approaches. Different areas of studies such as probing of cellular mechanical properties, cell separation using physical biomarkers (size, deformability, density) and effect of shear stress on cellular behavior and responses will be highlighted. Finally, we will discuss on the limitations and challenges associated with current microfluidics-based technologies and offer perspectives for future studies relating to cell biomechanics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available